
The Secrets of Concurrency

Dr Heinz M. Kabutz
The Java Specialists’ Newsletter

http://www.javaspecialists.eu

© 2007 Heinz Max Kabutz – All Rights Reserved

2

The Secrets of Concurrency

Make those multi-cores earn their keep ...

3

Background

Dr Heinz M. Kabutz

• German South African living in Europe

• The Java Specialists’ Newsletter

 30 000 readers in 113 countries

• Actively coding Java

• Teaching Java courses to companies:
 Java Patterns Course

 Java 5 Delta Course

 http://www.javaspecialists.eu/courses

• Java Champion

4

Conference Fatigue

Time for confession
• I struggle to concentrate listening to presentations

• Usually too difficult for me to understand

• Transition from basic to advanced happens too quickly

Lots of APIs, XML, Java demos that no one

can read
• <demo usefulness="0">Hey, let's use a font size of 10! Don't you love this demo? I know you cannot

read this, but showing off all this XML makes me feel so so clever <smiley /></demo>

5

Structure of Talk

The Laws of Concurrency
• Law 1: The Law of the Ritalin Child

• Law 2: The Law of the Distracted Spearfisherman

• Law 3: The Law of the Overstocked Haberdashery

• Law 4: The Law of South African Crime

• Law 5: The Law of the Leaked Memo

• Law 6: The Law of the Corrupt Politician

• Law 7: The Law of the Micromanager

• Law 8: The Law of Greek Driving

• Law 9: The Law of Sudden Riches

• Law 10: The Law of the Uneaten Spinach

6

Instead of suppressing
interruptions, deal with the cause.

* Ritalin: A drug commonly prescribed to
deal with naughty children.

7

Law 1: The Law of the Ritalin Child

Have you ever seen code like this?

try {
 Thread.sleep(1000);

} catch(InterruptedException ex) {
 // this won’t happen here
 }

We will answer the following questions:
• What does InterruptedException mean?

• How should we handle it?

8

Shutting Down Threads

Retrenchments
• Get rid of dead wood first!

Shutdown threads when they are inactive
• Thread.sleep()

• BlockingQueue.get()

• Semaphore.acquire()

• wait()

• join()

Law 1: The Law of the Ritalin Child

9

Thread “interrupted” Status

Thread “interrupted” == true
• At next blocking code, InterruptedException is thrown

• isInterrupted() returns true

You can set “interrupted” status to true

someThread.interrupt();

“interrupted” is set to false when
• InterruptedException is thrown

• Thread.interrupted() is called
 Beware of side effect!

Law 1: The Law of the Ritalin Child

10

How to Handle InterruptedException

Option 1: Simply re-throw InterruptedException
• Approach used by java.util.concurrency

• Not always possible if we are overriding a method

Option 2: Catch it and return
• Our current “interrupted” state should be set to true

while (!Thread.currentThread().isInterrupted()) {
 // do something
 try {
 TimeUnit.SECONDS.sleep(1000);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 break;
 }
} Law 1: The Law of the Ritalin Child

11

Focus on one thread at a time. The
school of threads will blind you.

* The best defense for a fish is to swim
next to a bigger, better fish.

12

Law 2: The Law of the Distracted
Spearfisherman

You must understand what every thread is

doing in your system
• Good reason to have fewer threads!

Don’t jump from thread to thread, hoping to

find problems

13

Causing Thread Dumps

The jstack tool dumps threads of process
• Similar to CTRL+Break (Windows) or CTRL+\ (Unix)

For thread dump JSP page
• http://www.javaspecialists.eu/archive/Issue132.html

• Sorted threads allow you to diff between calls

Law 2: The Law of the Distracted Spearfisherman

14

Having too many threads is bad for
your application. Performance will

degrade and debugging will become
difficult.

* Haberdasher: A shop selling sewing
wares, e.g. threads and needles.

15

Law 3: The Law of the Overstocked
Haberdashery

Story: Client-side library running on server

We will answer the following questions:
• How many threads can you create?

• What is the limiting factor?

• How can we create more threads?

16

JRE Dies with Internal Error
Exception in thread "main" java.lang.OutOfMemoryError: unable

to create new native thread
 at java.lang.Thread.start0(Native Method)
 at java.lang.Thread.start(Thread.java:597)
 at ThreadCreationTest$1.<init>(ThreadCreationTest.java:8)
 at ThreadCreationTest.main(ThreadCreationTest.java:7)
#
An unexpected error has been detected by Java Runtime

Environment:
#
Internal Error (455843455054494F4E530E4350500134)
Java VM: Java HotSpot(TM) Client VM (1.6.0_01-b06 mixed

mode, sharing)
An error report file with more information is saved as

hs_err_pid22142.log
#
Aborted (core dumped)

Law 3: The Law of the Overstocked Haberdashery

17

How to Create More Threads?

We created about 9000 threads

Reduce stack size
• java –Xss48k ThreadCreationTest

 32284 threads
 Had to kill with -9

• My first computer had 48k total memory
 Imagine 32000 ZX Spectrums connected as one

computer!

• Can cause other problems
 See The Law of the Distracted Spearfisherman

Law 3: The Law of the Overstocked Haberdashery

18

How Many Threads is Healthy?

Additional threads should improve performance

Not too many active threads
• 4 - 20 active per core

 Inactive threads
• Number is architecture specific

 But 9000 per core is way too much

• Consume memory

• Can cause sudden death of the JVM

Azul Systems (http://www.azulsystems.com)
• Build systems with 768 cores and 768GB memory

• Can have thousands of active threads

Law 3: The Law of the Overstocked Haberdashery

19

Traffic Calming

Thread pooling good way to control number

Use new ExecutorService
• Fixed Thread Pool

For lots of small tasks, thread pools can be

faster
• Not main consideration

Law 3: The Law of the Overstocked Haberdashery

20

import java.util.concurrent.*;

public class ThreadConstructTest {
 private static final int NUMBER_OF_THREADS = 100 * 1000;

 public void noThreadPool() throws InterruptedException {
 for (int i = 0; i < NUMBER_OF_THREADS; i++) {
 semaphore.acquire();
 new Thread(job).start();
 }
 // wait for all jobs to finish
 semaphore.acquire(10);
 semaphore.release(10);
 }

 private Semaphore semaphore = new Semaphore(10);
 private final Runnable job = new Runnable() {
 public void run() {
 semaphore.release();
 }
 };

Law 3: The Law of the Overstocked Haberdashery

21

 public void fixedThreadPool() throws InterruptedException {
 ExecutorService pool = Executors.newFixedThreadPool(12);
 for (int i = 0; i < NUMBER_OF_THREADS; i++) {
 semaphore.acquire();
 pool.submit(job);
 }
 semaphore.acquire(10); semaphore.release(10);
 pool.shutdown();
 }

 public static void main(String[] args) throws Exception {
 ThreadConstructTest test = new ThreadConstructTest();

 long time = System.currentTimeMillis();
 test.noThreadPool();
 System.out.println(System.currentTimeMillis() - time);

 time = System.currentTimeMillis();
 test.fixedThreadPool();
 System.out.println(System.currentTimeMillis() - time);
 }
}

16004
842

Law 3: The Law of the Overstocked Haberdashery

22

You might miss important
information if you try to be

too clever.

* “Crime is a perception”

23

Law 4: The Law of South African Crime

Java Memory Model allows thread to keep

local copy of fields

Your thread might not see another thread’s

changes

Usually happens when you try to avoid

synchronization

24

MyThread Might Never End!

public class MyThread extends Thread {
 private boolean running = true;
 public void run() {
 while(running) {
 // do something
 }
 }
 public void shutdown() {
 running = false;
 }
}

Law 4: The Law of South African Crime

25

Making Field Changes Visible

Three ways of preventing this
• Make field volatile

• Make field final thus putting a “freeze” on value

• Make read and writes to field synchronized

 Also includes new locks

Law 4: The Law of South African Crime

26

Better MyThread

public class MyThread extends Thread {
 private volatile boolean running = true;
 public void run() {
 while(running) {
 // do something
 }
 }
 public void shutdown() {
 running = false;
 }
}

Law 4: The Law of South African Crime

27

This may never happen, but when it
does, check your synchronization

* Memo about hostile takeover bid left
lying in photocopy machine

28

Law 5: The Law of the Leaked Memo

 If two threads call f() and g(), what are a and b equal
to?

public class EarlyWrites {
 private int x;
 private int y;

 public void f() {
 int a = x;
 y = 3;
 }

 public void g() {
 int b = y;
 x = 4;
 }
}

Early writes can result in:
a=4, b=3

29

The order of Things

Java Memory Model allows reordering of

statements

Includes writing of fields

To the writing thread, statements appear in

order

Law 5: The Law of the Leaked Memo

30

How to Prevent This?

JVM is not allowed to move writes out of

synchronized block
• Allowed to move statements into a synchronized block

Keyword volatile prevents early writes
• From the Java Memory Model:

 There is a happens-before edge from a write to a

volatile variable v to all subsequent reads of v by any

thread (where subsequent is defined according to the

synchronization order)

Law 5: The Law of the Leaked Memo

31

In the absence of proper controls,
corruption is unavoidable.

* Power corrupts. Absolute power

corrupts absolutely.

32

Law 6: The Law of the Corrupt Politician

Without controls, the best code can go bad

public class BankAccount {
 private int balance;
 public BankAccount(int balance) {
 this.balance = balance;
 }
 public void deposit(int amount) {
 balance += amount;
 }
 public void withdraw(int amount) {
 deposit(-amount);
 }
 public int getBalance() { return balance; }
}

33

What happens?

The += operation is not atomic

Thread 1
• Reads balance = 1000

• Locally adds 100 = 1100

• Before the balance written, Thread 1 gets swapped out

Thread 2
• Reads balance=1000

• Locally subtracts 100 = 900

• Writes 900 to the balance field

Thread 1
• Writes 1100 to the balance field

Law 6: The Law of the Corrupt Politician

34

Solutions

Pre Java 5
• synchronized

 Never use “this” as a monitor

Java 5 and 6
• Lock, ReadWriteLock

• AtomicInteger – dealt with in The Law of the

Micromanager

Law 6: The Law of the Corrupt Politician

35

Pre-Java 5

public class BankAccount {
 private int balance;
private final Object lock = new Object();

 public BankAccount(int balance) {
 this.balance = balance;
 }
 public void deposit(int amount) {
 synchronized(lock) { balance += amount; }
 }
 public void withdraw(int amount) {
 deposit(-amount);
 }
 public int getBalance() {
 synchronized(lock) { return balance; }
 }
} Law 6: The Law of the Corrupt Politician

36

ReentrantLocks

Basic monitors cannot be interrupted and

will never give up trying to get locked
• The Law of the Uneaten Spinach

Java 5 Locks can be interrupted or time out

after some time

Remember to unlock in a finally block

Law 6: The Law of the Corrupt Politician

37

 private final Lock lock = new ReentrantLock();

 public void deposit(int amount) {
 lock.lock();
 try {
 balance += amount;
 } finally {
 lock.unlock();
 }
 }

 public int getBalance() {
 lock.lock();
 try {
 return balance;
 } finally {
 lock.unlock();
 }
 } Law 6: The Law of the Corrupt Politician

38

ReadWriteLocks

Can distinguish read and write locks

Use ReentrantReadWriteLock

Then lock either the write or the read action

•lock.writeLock().lock();
•lock.writeLock().unlock();

Law 6: The Law of the Corrupt Politician

39

 private final ReadWriteLock lock =
 new ReentrantReadWriteLock();

 public void deposit(int amount) {
 lock.writeLock().lock();
 try {
 balance += amount;
 } finally {
 lock.writeLock().unlock();
 }
 }

 public int getBalance() {
 lock.readLock().lock();
 try {
 return balance;
 } finally {
 lock.readLock().unlock();
 }
 } Law 6: The Law of the Corrupt Politician

40

Even in life, it wastes effort and
frustrates the other threads.

* mi·cro·man·age: to manage or control
with excessive attention to minor details.

41

Law 7: The Law of the Micromanager

Thread contention is difficult to spot

Performance does not scale

None of the usual suspects
• CPU

• Disk

• Network

• Garbage collection

Points to thread contention

42

Real Example – Don’t Do This!

How to add contention

String WRITE_LOCK_OBJECT = "WRITE_LOCK_OBJECT";

Later on in the class

synchronized(WRITE_LOCK_OBJECT) { ... }

Constant Strings are flyweights!
• Multiple parts of the code locking on one object

• Can also cause deadlocks and livelocks

Thanks to Java Specialists’ Newsletter subscriber
David Hallett for sharing this with me

Law 7: The Law of the Micromanager

43

AtomicInteger

Thread safe without explicit locking

Tries to update the value repeatedly until success

public final int addAndGet(int delta) {
 for (;;) {
 int current = get();
 int next = current + delta;
 if (compareAndSet(current, next))
 return next;
 }
 }
}

Law 7: The Law of the Micromanager

44

import java.util.concurrent.atomic.AtomicInteger;

public class BankAccount {
 private final AtomicInteger balance =
 new AtomicInteger();

 public BankAccount(int balance) {
 this.balance.set(balance);
 }
 public void deposit(int amount) {
 balance.addAndGet(amount);
 }
 public void withdraw(int amount) {
 deposit(-amount);
 }
 public int getBalance() {
 return balance.intValue();
 }
}

Law 7: The Law of the Micromanager

45

Incorrect Code May Still Work

For a specific hardware architecture, ignore
• The Law of South African Crime

• The Law of the Leaked Memo

Rather stick to well-written code
• Atomics

• ConcurrentHashMap

• ConcurrentLinkedQueue

• ConcurrentNavigableMap

 ConcurrentSkipListMap and ConcurrentSkipListSet

Law 7: The Law of the Micromanager

46

The JVM rules are not very strict.
Your code is probably wrong, even

if it works.

* Don’t ever stop at a stop sign if
you treasure your car!

47

Law 8: The Law of Greek Driving

Learn the JVM Rules !

Example from JSR 133 – Java Memory Model
• VM implementers are encouraged to avoid splitting their

64-bit values where possible. Programmers are

encouraged to declare shared 64-bit values as volatile or

synchronize their programs correctly to avoid this.

48

JSR 133 allows this – NOT a Bug

Method set() called by two threads with

• 0x12345678ABCD0000L

• 0x1111111111111111L

public class LongFields {
 private long value;
 public void set(long v) { value = v; }
 public long get() { return value; }
}

Besides obvious answers, “value” could now also be

• 0x11111111ABCD0000L

• 0x1234567811111111L

Law 8: The Law of Greek Driving

49

Java Virtual Machine Specification

Gives great freedom to JVM writers

Makes it difficult to write 100% correct Java
• It might work on all JVMs to date, but that does not mean

it is correct!

Theory vs Practice clash

Law 8: The Law of Greek Driving

50

Synchronize at the Right Places

Too much synchronization causes contention
• As you increase CPUs, performance does not improve

• The Law of the Micromanager

Lack of synchronization leads to corrupt data
• The Law of the Corrupt Politician

Fields might be written early
• The Law of the Leaked Memo

Changes to shared fields might not be visible
• The Law of South African Crime

Law 8: The Law of Greek Driving

51

Does This Code Work?

public class CASCounter implements Counter {
 private long count = 0;
 private Thread owner;
 public long getCount() { return count; }
 public void increment() {
 do {
 while (this.owner != null); // wait
 this.owner = Thread.currentThread();
 for (int i = 0; i < 6; i++); // delay
 } while (this.owner != Thread.currentThread());
 this.count++;
 this.owner = null;
 }
}

Law 8: The Law of Greek Driving

52

Answer: Yes, it Does!

At least, on the architectures we tried ...

What could go wrong?
• Variable owner might not get updated in your thread

 Visibility problem

• The Law of South African Crime

 Can cause an infinite loop

Law 8: The Law of Greek Driving

53

Additional resources (faster CPU,
disk or network, more memory) for
seemingly stable system can make

it unstable.

* Sudden inheritance or lottery win …

54

Law 9: The Law of Sudden Riches

Better hardware can break system
• Old system: Dual processor

• New system: Dual core, dual processor

55

Faster Hardware

Latent defects show up more quickly
• Instead of once a year, now once a week

Faster hardware often coincides with higher

utilization by customers
• More contention

E.g. DOM tree becomes corrupted
• Detected problem by synchronizing all subsystem access

• Fixed by copying the nodes whenever they were read

Law 9: The Law of Sudden Riches

56

A deadlock in Java can only be
resolved by restarting the Java

Virtual Machine.

* Imagine a stubborn father insisting
that his stubborn daughter eat her

spinach before going to bed

57

Law 10: The Law of the Uneaten Spinach

Part of program stops responding

GUI does not repaint
• Under Swing

Users cannot log in anymore
• Could also be The Law of the Corrupt Politician

Two threads want what the other has
• And are not willing to part with what they already have

58

Using Multiple Locks

public class ProblemChild {
 private final Object lock = new Object();
 public synchronized void f() {
 synchronized(lock) {
 // do something ...
 }
 }
 public void g() {
 synchronized(lock) {
 f();
 }
 }
}

Law 10: The Law of the Uneaten Spinach

59

Finding the Deadlock

Pressing CTRL+Break or CTRL+\ or use jstack

Full thread dump:

Found one Java-level deadlock:
=============================
"g()":
 waiting to lock monitor 0x0023e274 (object
0x22ac5808, a com.maxoft.ProblemChild),

 which is held by "f()"
"f()":
 waiting to lock monitor 0x0023e294 (object
0x22ac5818, a java.lang.Object),

 which is held by "g()"

Law 10: The Law of the Uneaten Spinach

60

Deadlock Means You Are Dead ! ! !

Deadlock can be found with jconsole

However, there is no way to resolve it

Better to automatically raise critical error
• Newsletter 130 – Deadlock Detection with new Lock

 http://www.javaspecialists.eu/archive/Issue130.html

Law 10: The Law of the Uneaten Spinach

61

Conclusion

Threading is easy, when you know the rules

Tons of resources on JavaSpecialists.EU
• http://www.javaspecialists.eu

62

The Secrets of Concurrency

Dr Heinz M. Kabutz
The Java Specialists’ Newsletter
http://www.javaspecialists.eu

